#3902
SortSum
Scrie un program care citind un șir de numere naturale afișează numerele citite ordonate crescător după suma cifrelor lor, iar dacă suma cifrelor este egală, descrescător după valoarea lor.
#2384
Divigrup
Un șir de numere aparțin unui divigrup dacă au același număr de divizori. Scrieți un program care citește un număr natural N
și apoi N
numere naturale nenule și care determină:
a. câte divigrupuri există în șirul de numere citite
b. numărul de numere din fiecare divigrup, urmat de numerele ce aparțin acestuia, în ordine crescătoare.
#2126
NrMaxInterv
Se consideră n
intervale de numere întregi [A
i
, B
i
]
, 1≤i≤n
. Să se determine numărul maxim de intervale care se suprapun (au cel puțin o valoare comună).
din folclor
#4062
SezonulLamaCrima
Se dau n
intervale, să se afișeze care dintre ele includ alte intervale și care sunt incluse într-un interval. Intervalul [a,b]
este inclus în intervalul [c,d]
dacă c <= a și b <= d
(a < b, c < d
).
cses
#3607
run
În această dimineață Aky, un băiat sportiv, s-a hotărât să meargă la alergat. Acesta vrea după ce ajunge acasă să își rezolve tema la informatică și pentru asta trebuie să nu fie foarte obosit în urma antrenamentului, deci vrea să își aleagă un traseu cât mai ușor pe care să alerge, deci și-a pus la punct un plan foarte exact. Acesta are în orașul său o distanță N
kilometri legați, numerotați de la 1
la N
, iar fiecărui kilometru i
din cele N
(1 ≤ i ≤ N
) îi cunoaște gradul de dificultate a[i]
. Băiatul a întocmit o listă cu M
intervale diferite de kilometri de forma [l, r]
, fiecare interval având un anumit grad de oboseală asociat acestuia. Gradul de oboseală G
asociat unui interval [l, r]
de lungime L = r - l + 1
se calculează astfel: G = a[l] * L + a[l + 1] * (L - 1) + ... + a[r - 1] * 2 + a[r] * 1
și reprezintă cu cât va crește valoarea de oboseală a lui Aky dupa ce va alerga kilometrii intervalului respectiv. Acum Aky vă cere vouă să-l ajutați să-și ducă planul la final, aflând care este valoarea minimă de oboseală pe care o poate avea la finalul antrenamentului său, știind că trebuie sa alerge kilometrii a exact K
din intervalele din lista sa.
Baraj pentru IIOT, CNLB Sebes
#1687
Omogene
Se consideră o matrice cu L
linii și C
coloane care memorează doar valori din mulțimea {0,1,2}
. O submatrice nevidă (formată din cel puțin o linie și cel puțin o coloană) a acestei matrice o numim omogenă dacă numărul valorilor de 0
este egal cu numărul de valori de 1
și egal cu numărul valorilor de 2
.
Să se determine câte submatrice nevide omogene există.
ONI 2016, clasa a IX-a
#3566
Templu
Copa ajunse în Orintia unde există un templu cu mai multe nivele, baza fiind un pătrat de lungime L
. Primul nivel are înălţimea egală cu N
, iar celelalte nivele au înălţimea mai mare cu o unitate faţă de cel anterior. Spre exemplu pentru L
= 5
şi N
= 3
din stâncă răsări templul (imagine din avion şi de la sol):
3 3 3 3 3
3 4 4 4 3
3 4 5 4 3
3 4 4 4 3
3 3 3 3 3
5
4 4 4
3 3 3 3 3
Copa deschise un document vechi şi citi: „Ca să afli cât aur este în templu, trebuie să însumezi numărul de metri de pe fiecare orizontală…”. Şi Copa socoti: 3
+ 3
+ 3
+ 3
+ 3
= 15
; 3
+ 4
+ 4
+ 4
+ 3
= 18
; 3
+ 4
+ 5
+ 4
+ 3
= 19
; celelalte 18
şi 15
. „Apoi, trebuie să afli suma numerelor obţinute…”. Iar Copa îşi notă numărul 85
. „Toate numerele obţinute se lipesc pentru a forma cel mai mic număr posibil…”. Şi Copa obţinu numărul: 151518181985
. „Din numărul acesta se caută cel mai mare număr de două cifre alăturate. Aceasta este cantitatea de aur din templu.”. Şi Copa ţipă de bucurie: 98
!.
Plecaţi în Orintia! Veţi primi cele două numere N
şi L
şi vi se cere să determinaţi numărul obţinut din sume şi cantitatea de aur.
OJI 2003
#3003
Intersectie
Pe un cerc sunt așezate echidistant N
puncte, etichetate în sensul acelor de ceas cu 1
, 2
, 3
, …, N
.
Se dau M
intervale de forma [a, b]
și T
interogări de forma P Q
.
Pentru fiecare interogare [P, Q]
să se verifice dacă este adevărat sau fals că intersecția tuturor intervalelor care au puncte comune cu [P, Q]
include intervalul [P, Q]
.
Info Oltenia 2019
#2974
Zzid
Fie un zid perfect dreptunghiular de înaltime H
și lățime W
, format din cărămizi de înalțime 1
și lățime variabilă, lipite între ele.
Să se taie acest zid pe verticală astfel încât numărul de cărămizi ce trebuie tăiate să fie minim. În cazul în care există mai multe astfel de locuri unde poate fi tăiat zidul, se dorește ca diferența lățimilor celor două bucăți obținute să fie cât mai mică.
Info Oltenia 2019
#3397
gard2
Mihăiță s-a hotărât să își construiască un gard perfect cu ajutorul lui Dorel – un constructor renumit.
Un gard perfect trebuie să respecte următoarele cerințe:
1. Gardul să fie format din N
scânduri de înălțimi nu neapărat egale;
2. Scândurile pot fi așezate în orice ordine;
3. Există un număr egal de scânduri pentru fiecare înălțime;
Mihăiță acceptă un gard ca fiind perfect dacă respectă condițiile de mai sus înainte sau după eliminarea unei singure scânduri. Ajutați-l pe Mihăiță să verifice perfecțiunea celor T
garduri propuse de Dorel.
Info-Oltenia 2020, Clasele VII-VIII