#4697
NicușorD
Nicușor, primarul capitalei, a fost invitat în seara zilei de 5 septembrie 2024 la jurnalul de seară al Digi 24. Acesta a fost provocat să rezolve o problemă “de clasa a patra” propusă de către o profesoară: “Care este cel mai mic număr natural nenul care are proprietatea că dacă mutăm ultima sa cifră în fața primei cifre, valoarea noului număr este egală cu dublul numărului inițial”. Cu alte cuvinte, acestuia i s-a cerut să găsească cel mai mic număr nenul de forma \(\overline{c_1 c_2 … c_n}\) cu proprietatea \(\overline{c_n c_1 c_2 … c_{n-1}} = 2 \times \overline{c_1 c_2 … c_n}\).
După ce a rezolvat problema, Nicușor a decis să o generalizeze, astfel propunând o variantă pentru clasa a cincea: Care este cel mai mic număr natural nenul, care, scris in baza b
ca \(\overline{c_1 c_2 … c_n}_{(b)}\), are proprietatea că \(\overline{c_n c_1 c_2 … c_{n-1}}_{(b)} = a \times \overline{c_1 c_2 … c_n}_{(b)}\) unde 2 ≤ a < b
.
Digi 24, enunț modificat
#3117
erm9
Numim suma cifrelor până la o cifră a unui număr X
, o valoare mai mică decât 10
obținută prin adunarea cifrelor numărului X
și repetarea procedurii dacă suma obținută este mai mare decât 10
, de această dată având drept X
suma obținută la pasul precedent.
Se dau două numere a
și b
. Calculați suma cifrelor pana la o cifra a lui \({a}^{b}\).
#3332
PatratMagic4
C++
Să se scrie o funcție care primește ca parametru un număr natural c
și returnează numărul de ordine al pătratului magic cu constanta c
, dacă există.
#3344
Fibonacci2
Șirul lui Fibonacci este definit astfel:
$$ F_n = \begin{cases}
1& \text{dacă } n = 1 \text{ sau } n = 2 ,\\
F_{n-1} + F_{n-2} & \text{dacă } n > 2.
\end{cases} $$
Se dă un număr natural n
. Determinați al n
-lea termen al șirului, modulo 666013
.
#3411
Gaseste Permutarea
C++
Determinați cea de-a \(N\)-a permutare a numerelor \(1,2,… P\) atunci cand aceste permutari sunt generate în ordine lexicografică.
#3509
secvDiv
Aflați câte subsecvențe de cifre din s
formează numere divizibile cu n
.
#3546
sidon
Dorel şi consătenii lui, fiind în perioada de alertă, s-au aşezat la rând la magazin. Fiecare avea la el o sumă diferită de bani şi, mai mult, sumele de bani ale secvenţelor de oameni din rând erau diferite oricare două.
Aflaţi ce sumă de bani avea fiecare sătean la el.
#3556
xorsum
Se dau numerele naturale n
, x
, y
, z
, t
. Se generează vectorul a
astfel: a[i] = (a[i-1] * x + y) % z
, pentru 1 ≤ i ≤ n
si a[i] = 0
pentru i = 0
. Determinați ∑(a[i] XOR a[j])
, unde 1 ≤ i < j ≤ n
, modulo t
.
#3785
Al
Al Bundy a plecat la serviciu, lăsându-i soţiei lui, Peg, cardul de cumpărături. PIN-ul este valoarea expresiei \(E\left ( n \right )=\sum_{k = 1}^{n}\left ( 2\cdot \left ( a^{2}+b^{2} \right )^{\frac{k}{2}}\cdot cos\left ( k\cdot \alpha \right ) \right ),\ \)unde \(\ \alpha =arctg\left ( \frac{a}{b} \right ) \), iar n, a, b
sunt numere naturale nenule.
#3935
determinanta
Se consideră o matrice cu n
linii şi n
coloane şi elemente egale cu 0
sau 1
. Să se calculeze determinantul matricei.