Lista de probleme 5

Etichete

Se dau două numere naturale w şi h reprezentând lungimile laturilor dreptunghiului ABCD, un număr natural n şi n numere naturale x1, x2,… xn cu propietatea din enunt. Punctul P se plasează, pe rând, în toate punctele interioare dreptunghiului ABCD care sunt colţuri ale unor pătrate de latură 1. Pentru fiecare valoare x[i] (1 ≤ i ≤ n), determinaţi numărul de segmente distincte care trec prin exact x[i] pătrate
2-intersectate.

ONI 2012, Clasa a IX-a

Un indicator cu 7 segmente este un dispozitiv de afişaj electronic destinat afişării unei cifre zecimale. Aceste dispozitive sunt utilizate pe scară largă în ceasuri digitale, contoare electronice şi alte aparate, pentru afişarea informaţiilor numerice. Cele 7 segmente au fost notate cu literele a, b, c, d, e, f, g, după modelul din figura de mai jos.

Afişarea uneia din cifrele de la 1 la 9 constă în aprinderea anumitor segmente din cele 7, după cum urmează:
Cifră 1 2 3 4 5 6 7 8 9
Segmente aprinse b,c a,b,d,e,g a,b,c,d,g b,c,f,g a,c,d,f,g a,c,d,e,f,g a,b,c a,b,c,d,e,f,g a,b,c,d,f,g

Proiectarea diverselor sisteme de afişaj trebuie să ţină cont şi de puterea necesară pentru afişarea unei cifre. Pentru aprinderea unui segment este necesară o putere de 1 mW. Astfel, în funcţie de cifra afişată, dispozitivul necesită o putere egală cu numărul de segmente aprinse la afişarea cifrei respective. Puterea necesară pentru afişarea unui număr natural este egală cu suma puterilor necesare afişării fiecăreia dintre cifrele sale.

Să se scrie un program care citeşte două numere naturale nenule n şi p, (numărul n având toate cifrele nenule)şi calculează:

  • numărul natural k reprezentând puterea necesară pentru afişarea numărului n;
  • cel mai mare număr natural t, format numai din cifre nenule, mai mic sau egal decât n, care necesită pentru afişare o putere de cel mult p mW.

#1656 UnuZero

Se consideră un şir format din N+2 cifre binare, care conţine cel puţin o cifră 1 şi cel puţin trei cifre 0; prima şi ultima cifră a şirului sunt 0.
Numim 1-secvenţă o succesiune formată numai din cifre 1, aflate pe poziţii consecutive în acest şir, delimitată de câte o cifră 0.
Corina construieşte un astfel de şir, în care numărul de cifre 1 ale fiecărei 1-secvenţe să fie cuprins între două numere naturale date, p şi q. Scrieţi un program care să determine un număr natural K, egal cu restul împărţirii la 666013 a numărului de şiruri distincte, de tipul celui construit de Corina.

#1730 Sstabil

Numim număr sstabil orice număr natural care este format dintr-o singură cifră sau care are suma oricăror două cifre vecine strict mai mare decât nouă.

Asupra oricărui număr care nu este sstabil se pot efectua operaţii de înlocuire a oricăror două cifre vecine care au suma strict mai mică decât zece cu o cifră egală cu suma lor.

Operaţiile de înlocuire pot fi aplicate, în acelaşi condiţii, şi asupra numerelor rezultate după fiecare înlocuire, de câte ori este nevoie, până când se obţine un număr sstabil.

De exemplu, 291 este număr sstabil deoarece 2+9>9 şi 9+1>9, iar 183 nu este sstabil pentru că 1+8<10. Din numărul 2453, efectuând o singură înlocuire, putem obţine 653 sau 293 (număr sstabil) sau 248. Numărul 653, nefiind sstabil, permite o nouă operaţie de înlocuire, obţinând astfel numărul 68, care este sstabil. Analog, din numărul 248 se poate obţine numărul sstabil 68.

Scrieţi un program care să determine cel mai mare număr natural sstabil care se poate obţine dintr-un număr natural dat, aplicând una sau mai multe operaţii de înlocuire de tipul menţionat.

#3564 copaci1

Se consideră n copaci de diferite înălţimi, aflaţi în linie dreaptă la distanţe egale, numerotaţi de la 1 la n. Pentru fiecare copac se cunoaşte înălţimea sa \( {H}_{i} \). Cum şi copacii simt nevoia să socializeze, fiecare dintre ei are prieteni printre ceilalţi copaci. Prietenii oricărui copac i se pot afla atât la stânga, cât şi la dreapta sa. Relaţiile de prietenie sunt definite în felul următor: pentru fiecare copac i considerăm un şir \( {d}_{1}, {d}_{2}, …, {d}_{x} \) reprezentând prietenii copacului i situaţi în dreapta sa şi un şir \( {s}_{1}, {s}_{2}, …, {s}_{y} \) reprezentând prietenii copacului i situaţi în stânga acestuia. Copacii din cele două şiruri corespunzătoare unui copac i formează împreună lista prietenilor acestuia. Determinaţi în câte moduri se pot alege 3 copaci diferiţi dintre cei n cu proprietatea că, oricum am alege 2 copaci dintre cei 3, fie aceştia copacul A şi copacul B, atunci A este prieten cu B şi B este prieten cu A.