#2917
Catalan
Numerele lui Catalan formează un șir cunoscut în combinatorică. Termenul general al acestui șir este:
$$ C_n = C_{2n}^{n} – C_{2n}^{n+1} = \frac{1}{n+1}\cdot C_{2n}^{n} = \prod _{k=2}^{n} \frac{n+k}{k}, \text{pentru } n ≥ 0 $$
Se dă numărul natural n
. Să se determine și să se afișeze al n-lea
număr Catalan.
ID | Utilizator | Problema | Data încărcării | Stare | ||
---|---|---|---|---|---|---|
Catalan | 22 Mai 2020, 17:11 | Evaluare finalizată | 100 |