Lista de probleme 3

Etichete

#1218 Teren

În satul vecin există un teren agricol de formă dreptunghiulară împărțit în N*M pătrate elementare identice, dispuse alăturat câte M pe fiecare rând şi câte N pe fiecare coloană. Rândurile sunt numerotate de la 1 la N, iar coloanele de la 1 la M. Un pătrat elementar situat în teren pe rândul R și coloana C este identificat prin coordonatele (R,C).

Suprafețe dreptunghiulare din teren (formate fiecare din unul sau mai multe pătrate elementare alăturate) sunt revendicate de T fermieri din sat, în calitate de moștenitori, pe baza actelor primite de la strămoșii lor. Pentru că au apărut și acte false, s-a constat că pot exista mai mulți fermieri care revendică aceleași pătrate elementare.

În cele T acte ale fermierilor, suprafețele dreptunghiulare sunt precizate fiecare prin câte două perechi de numere (X,Y) și (Z,U), reprezentând coordonatele primului pătrat elementar din colțul stânga-sus al suprafeței (rândul X și coloana Y), respectiv coordonatele ultimului pătrat elementar situat în colțul dreapta-jos al suprafeței (rândul Z și coloana U).

Scrieţi un program care să citească numerele naturale N, M, T, R, C apoi cele T perechi de coordonate (X,Y) și (Z,U) precizate în acte (corespunzătoare suprafețelor dreptunghiulare revendicate) și care să determine:

  1. numărul fermierilor care revendică pătratul elementar identificat prin coordonatele (R,C);
  2. numărul maxim de fermieri care revendică același pătrat elementar;
  3. numărul maxim de pătrate elementare ce formează o suprafață pătratică nerevendicată de niciun fermier.

#1216 Echer

Oli are un echer de forma unui triunghi dreptunghic, cu catetele de lungimi L1 și L2 unități, și o foaie de caiet de matematică cu M rânduri și N coloane de pătrățele având latura de o unitate.

Oli a poziționat echerul în colțul din stânga sus al foii de hârtie, ca în imaginea alăturată și vrea să îl mute astfel încât să atingă colțul din dreapta jos al foii de hârtie cu oricare din colțurile echerului, utilizând doar mutări de forma:

Scrieţi un program care citeşte lungimile catetelor echerului, numărul de rânduri, respectiv numărul de coloane ale foii de hârtie și determină:

1. numărul minim de mutări K, prin care poate muta echerul din colțul din stânga sus al foii de matematică, astfel încât echerul să atingă colțul din dreapta jos al foii;
2. cele K mutări efectuate pentru a deplasa echerul din colțul din stânga sus al foii, până când un colț al echerului atinge colțul din dreapta jos al foii; dacă există mai multe soluții, se va afișa soluția minimă în sens lexicografic.

ONI GIM 2015, Clasa a VI-a

În acest an evenimentul ”Hour of Code” a înregistrat un număr record de participanți din țara noastră. În cadrul acestui eveniment una dintre cele mai accesate aplicații a fost Lightbot, care a permis elevilor să-și testeze abilitățile de programare.

Aplicația Lightbot are N nivele, numerotate consecutiv de la 1 la N, în ordinea strict crescătoare a complexității lor. Lightbot a permis fiecărui participant să înceapă cu orice nivel strict mai mic decât N-1 și să sară peste un singur nivel, fără a finaliza codul, trecând la nivelul următor celui sărit. La finalizarea cu succes a codului corespunzător nivelului curent, participantul este promovat la nivelul imediat următor. Fiecare participant a început scrierea codurilor la un nivel P și a sărit peste un nivel L (P < L < P + K), finalizând K nivele memorate ca o succesiune de numere naturale de forma P, P+1,..., L-1, L+1,..., P+K. Succesiunile de nivele finalizate de participanți au fost memorate în fișierul lightbot.in. Succesiunile corespunzătoare participanților nu se intercalează în fișier.

Scrieţi un program care citeşte succesiunile corespunzătoare nivelelor finalizate de participanții care au jucat Lightbot și determină:

1. numărul total de participanți;
2. numărul celui mai dificil nivel care a fost rezolvat de un număr maxim de participanți;
3. pentru fiecare participant, numărul nivelului sărit de acesta.