Lista de probleme 6

Etichete

Un vârcolac bântuie ulițele satului Bosston, semănând panică printre săteni. Satul Bosston este compus din 2*N săteni, fiecare dintre aceștia fiind rudă cu exact un vârcolac. Vârcolacii sunt codificați cu numere naturale. Pentru a afla care este vârcolacul care le cauzează probleme, aceștia s-au dus la vraciul local. Acesta a spus că, dacă există un vârcolac V astfel încât oricum s-ar împărți cei 2*N săteni în două grupuri de N săteni, există cel puțin un sătean în primul grup și cel puțin un sătean în al doilea care să fie rude cu V, atunci vârcolacul V sigur este cel care bântuie satul. Dacă nu există un astfel de vârcolac, atunci sătenii nu își pot da seama cine le bântuie satul.

Cunoscând N și indicii vârcolacilor cu care se înrudesc fiecare dintre cei 2*N săteni, să se determine vârcolacul care bântuie satul, în cazul în care acesta există.

#1117 Volum

K.L. 2.0 și-a dorit o piscină pe un grid A cu N linii și M coloane. Cum K.L. 2.0 nu a fost foarte inspirat, el a uitat să își niveleze terenul înainte de a construi piscina, astfel încât fiecare celulă de coordonate (i, j) a gridului are o înalțime Ai,j (1 ≤ i ≤ N și 1 ≤ j ≤ M). La un moment dat începe o ploaie puternică, care umple piscina cu apă. După terminarea ploii, K.L. 2.0 se întreabă câtă apă are în piscină.

Dintr-o celulă apa se varsă în celulele vecine cu care are o latură comună şi care au înălţimea strict mai mică decât celula curentă. Apa de pe marginea piscinei se scurge în exterior.

Pentru N, M și gridul A date, să se determine volumul de apă care a rămas în piscină.

Se dă o matrice cu m linii şi n coloane, fiecare linie reprezentând o permutare. Se ştie că liniile de la 2 la m sunt permutări circulare ale primei linii. Unei linii x (1 ≤ x ≤ m) i se pot aplica următoarele operaţii:

  • o permutare circulară la stânga: elementul de pe poziţia i (1 < i ≤ n) se mută pe poziţia i-1, mai puţin primul primul element, care devine ultimul;
  • o permutare circulară la dreapta: elementul de pe pozitia i (1 ≤ i < n) se mută pe poziţia i+1, mai puţin ultimul element care devine primul.

Scopul este să permutăm circular liniile, la stânga sau la dreapta, astfel încât în final toate liniile să fie egale, folosind un număr minim de operaţii.

Dându-se o matrice cu proprietatea din enunţ se cere să se determine numărul minim de operaţii necesare pentru a ajunge la o matrice în care toate liniile sunt egale.

ONI 2014, Clasele XI-XII

#1116 karb

În perioada Campionatului Mondial din Brazilia se preconizează o creştere a traficului de cafea. Se ştie că sunt N orase, conectate prin N-1 străzi bidirecţionale, astfel încât se poate ajunge din orice oraş în altul. În prezent există K carteluri de cafea aflate în oraşe distincte, care își exercita influența în propriul oraș. Se ştie că fiecare din aceste carteluri doreşte să-şi extindă influenţa în oraşele vecine. Astfel, la un moment de timp, un cartel poate să-şi extindă influenţa într-un oraş vecin doar dacă acesta nu se află sub influenţa altui cartel. O dată ce un cartel îşi extinde influenta asupra unui nou oraş, cartelul îşi poate extinde influenţa şi în oraşele vecine acestuia. Se ştie că până la începerea campionatului mondial, fiecare oraş va fi sub influenţa unui cartel.

ABIN (Agência Brasileira de Inteligência) doreşte să afle în câte moduri poate fi dominată ţara de influenţele celor K carteluri la data începerii campionatului mondial, modulo 666013.

Cunoscând numărul de orașe N, modul în care acestea sunt conectate, numărul de carteluri inițiale K și cele K orașe în care se află cartelurile, să se determine numărul de moduri în care ţara poate fi împărţită între cartelurile de cafea, modulo 666013.

Un graf conex cu N noduri și M muchii poate fi privit ca o clepsidră cu centrul în nodul X, 1 ≤ X ≤ N, dacă putem împărți toate nodurile, mai puțin nodul X, în două submulțimi nevide astfel încât orice drum de la un nod dintr-o mulțime la un nod din cealaltă mulțime trece prin nodul X. Voi trebuie să determinați numărul de moduri distincte în care putem privi graful ca o clepsidră pentru fiecare din cele N noduri alese drept centru, modulo 666013. Două moduri se consideră distincte dacă cele două submulțimi aferente sunt diferite. Ordinea submulțimilor într-un mod este relevantă, dar ordinea nodurilor în cadrul unei mulțimi nu este. Spre exemplu, soluțiile ({1,2,3}, {4,5}) şi ({4,5}, {1,2,3}) sunt distincte, dar soluţiile ({4,5}, {1,2,3}) şi ({4,5}, {1,3,2}) nu sunt distincte.

#1120 xcmmdc

Se dă o matrice cu m linii şi n coloane, cu elementele numere naturale nenule şi un număr natural nenul fixat k.

Pentru matricea dată şi numărul k dat să se răspundă la q întrebări de forma: “Câte submatrice pătratice de latură L cu cel mai mare divizor comun al elementelor egal cu k există în matricea dată?”