Detalii evaluare #47900981

Rezumat problemă

#2010 Fermier

Dorel și-a achiziționat o fermă cu n plantații și o mașină de transport cu o capacitate c, pentru transportul de îngrășăminte la toate plantațiile. Îngrășămintele se află într-un depozit, în cantitate suficientă pentru scopul propus. Plantațiile și depozitul sunt dispuse sub forma unui cerc. Există drumuri doar între plantația i și plantația i+1 (1≤i≤n-1), precum și între depozit și plantația 1 și depozit și plantația n, ca în figură.

La o plantație i se poate ajunge de la depozit trecând prin plantațiile 1, 2,…, i-1 sau prin plantațiile n, n-1, …, i+1, alegerea făcându-se în funcție de traseul cel mai scurt. Se cunosc aceste distanțe, precum și cantitatea de îngrășăminte necesară pentru fiecare plantație. La fiecare încărcare, Dorel ia din depozit exact cantitatea c. Dorel vrea să-și organizeze bine munca la fermă și să consume cât mai puțină benzină prin alegerea celor mai scurte trasee de parcurs. Plantațiile trebuie să fie aprovizionate obligatoriu în ordinea următoare: mai întâi plantația 1, apoi plantația 2, plantația 3,…, plantația n. În plus, și-a propus să încarce o nouă cantitate de îngrășământ doar după ce a folosit toată cantitatea încărcată anterior. Transportarea îngrășămintelor pe plantații se face deci, începând cu plantația 1. După ce se transportă toată cantitatea necesară pentru această plantație, se trece la plantația 2, și tot așa în ordine la 3, 4 etc. până se deservește ultima plantație. Dacă după ce s-au transportat îngrășămintele necesare pentru plantația i în mașină au mai rămas încă îngrășăminte, acestea trebuie utilizate în continuare pentru alte plantații, alese în ordinea impusă (începând cu plantația i+1, apoi i+2 etc.), până se epuizează toată cantitatea transportată de mașină. Astfel, dacă de la plantația i trebuie să ajungă la plantația i+1, va alege cel mai scurt traseu dintre traseul direct de la plantația i la i+1 și traseul care trece prin plantațiile i-1, i-2, …, 1, depozit, n, n-1, …, i+1. La final, mașina trebuie să se întoarcă la depozit, goală sau cu cantitatea rămasă după aprovizionarea cu îngrășăminte a plantației n.

Ajutați-l pe Dorel să calculeze distanța parcursă pentru a transporta îngrășăminte la toate cele n plantații, conform cerințelor.

Detalii

Problema Fermier Operații I/O fermier.in/fermier.out
Limita timp 0.1 secunde Limita memorie Total: 16 MB / Stivă 8 MB
Id soluție #47900981 Utilizator 5B Boicea Anton (Kylian)
Fișier fermier.cpp Dimensiune 3.53 KB
Data încărcării 09 Ianuarie 2024, 15:12 Scor / rezultat 100 puncte

Evaluare


Mesaj compilare


Rezultat evaluare

Test Timp Mesaj evaluare Scor posibil Scor obținut
0 0 secunde OK. 3 3
1 0 secunde OK. 7 7
2 0 secunde OK. 4 4
3 0 secunde OK. 6 6
4 0 secunde OK. 3 3
5 0 secunde OK. 7 7
6 0 secunde OK. 2 2
7 0 secunde OK. 8 8
8 0 secunde OK. 4 4
9 0 secunde OK. 6 6
10 0 secunde OK. 4 4
11 0 secunde OK. 4 4
12 0 secunde OK. 4 4
13 0 secunde OK. 4 4
14 0 secunde OK. 4 4
15 0 secunde OK. 4 4
16 0 secunde OK. 4 4
17 0 secunde OK. 4 4
18 0 secunde OK. 4 4
19 0 secunde OK. 4 4
20 0 secunde OK. 10 10 Exemplu
Punctaj total 100

Cum funcționează evaluarea?

www.pbinfo.ro permite evaluarea a două tipuri de probleme:

  • probleme la care rezolvarea presupune scrierea unui program complet
  • probleme la care rezolvarea presupune scrierea unei secvențe de program - câteva instrucțiuni, o listă de declarații, una sau mai multe funcții, etc.

Problema Fermier face parte din prima categorie. Soluția propusă de tine va fi evaluată astfel:

  • Programul sursă este compilat folosind compilatorul corespunzător. Dacă în urma compilării se obțin erori sau avertismente, acestea sunt afișate în această pagină.
  • Dacă programul a fost compilat, executabilul obținut va fi rulat, furnizându-i-se unul sau mai multe seturi de date de intrare, în concordanță cu restricțiile specifice problemei. Pentru fiecare set de date se obține un anumit punctaj, în raport cu corectitudinea soluției tale.

Suma punctajelor acordate pe testele utilizate pentru verificare este 100. Astfel, soluția ta poate obține cel mult 100 de puncte, caz în care se poate considera corectă.